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SUMMARY

Distribution theory for the likelihood ratio statistics

for the comparison of several treatments with a control is

discussed. These test statistics account for prior information

that the trea::ments are at least as effective as the control.

Their null distributions are mixtures of chi-squared or beta

distributions and the rixing coefficients, which are -level

probabilities O, are intractable for even a moderate number

of treatments and unequal weights, which are typically the

sample sizes. The distribution corresponding to equal weights

is considered as an approximation and an arproximation based

on the pattern of large and small weights is developed. Both

are adequate for moderate variations in the weights, but the

approximation based on patterns in the .,eight set is considerably

more accurate for larger vaiations.,_,,
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1. INTRODUCTION

We consider the situation in which one wishes to compare

several treatments with a control or standard when it is

believed that the treatments are at least as effective as

the control. For example, in a drug study, several drugs

may be compared to a zero dose control.

Assuming that the observations are normally distributed,

let H1 denote the hypothesis that pl < pi for i = 2,...,k,

where p, is the control mean and the Vi for 2 < i < k,are the

treatment means. Barlow, Bartholomew, Bremner and Brunk (1972)

discuss testing homogeneity, ie. H0: uI = 2 = =

versus an arbitrary partial ordering on the pi and call the

ordering specified by H1 a simple tree ordering. Robertson

and Wegman (1978) consider tests with the partial order

restriction the null hypothesis. In both of these situations,

the distribution of the likelihood ratio test (LRT) under H0

is a mixture of chi-squared or beta distributions depending

on whether the variances are known or not. The mixing

coefficients are the probabilities, under H0 , that the maximum

likelihood estimates (MLEs) of the Pi. subject to the partial

order restriction, have a specified number of distinct values.

These coefficients, which are also called level probabilities,

depend upon the precisions of the sample means. The precisions

will be referred to as weights. We will see that, even in the

case of a simple tree ordering, the level probabilities can be

very tedious to compute for unequal weights and moderate k.
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Dunnett (1955, 1964) proposed a test of H0 versus HI-Hot

that is H1 but not H0 . For the case of unknown variances,

the test statistic is the maximum of appropriate pairwise

t-test statistics. Robertson and Wright (1983b) studied the

power functions for this test, the LRT and the one-sided

t test which compares the control mean with the pooled treat-

ment means. While Dunnett's test and the t test are more

powerful in some subregions of the alternative space, the

LRT maintains a more reasonable power throughout H1 .

We consider approximations for the level probabilities

needed to implement the LRT for a simple tree ordering and

unequal weights. For a total order such as Vi , -<

Siskind (1976) and Grove (1980) observed that the level

probabilities are robust to moderate variations in the weights

and conjectured that, except in extreme cases, the level

probabilities associated with equal weights should provide

reasonable approximations. Robertson and Wright (1983a) studied

their conjecture in the totally ordered case and found that

* for many practical applications this approximation is

satisfactory. They also found that the quality of the

approximation depends on the pattern of the larger and smaller

weights, and they developed an approximation based upon such

patterns. Following their work we study the equal-weights

level probabilities as an approximation and develop an

approximation based on the pattern of large and small weights

for the simple tree ordering.



4

In Section 2, the level probabilities are studied as

functions of the weights. Upper and lower bounds for the

tail probabilities of the LRT statistics are determined

and these bounds are shown to be sharp. In Section 3, the

accuracy of the equal-weights approximation is considered

for particular types of weight sets, as well as randomly

generated weight sets. As in the totally ordered case, it

is found that for many practical situations the equal-weights

approximation is adequate. However, for large variation in

the weights and certain patterns of large and small weights,

there may be considerable error in this approximation. In

Section 4, the limiting values of these mixing coefficients

are obtained for each possible weight set in which only two

values are assumed with one value constant and the other

approaching infinity. Using these results, an approximation

is proposed which outperforms the equal-weights approximation

for weight sets with a large amount of variation.



2. THE LEVEL PROBABILITIES

Suppose Xij, j 1,...,n i and i = 1,...,k are independent

random samples from k normal populations with means ui and

variances a 2 a2b with a2 known and b - 1 if known. Let1 1 1

Xl,...'Xk denote the sample means, let w - (wl,...,wk) with

= ni/a2 denote the vector of weights and let P(tk;w)
i  1

denote the probability, under H0, that U = (_l,..•,0k), the

MLE of p = (Pl,...,"k) subject to the restriction Hl, has

exactly Z distinct values.

For the case of known variances, the LRT statistic for

versus H1 - H0 is T0 1 =il wi(1i-I) where
0 k 1 k a

k=l w-X i= w and under H0 ,

-2k2
2(t) > t) = 2 > t) for t> 0. (1)w pr(T 01  2 P(k;w)pr( -

The LRT statistic for H versus H2: u i < U for some i is T1 2 =

k 2
i. 1 w i(_i- Xi )  Within HI H0 is least favorable and under H0,

ST-l P(.,k;w)pr(X2 _>t) for t>0. (2)

The V2 distributions in (1) and (2) arise as approximations

when considering multinomial parameters (cf. Robertson (1978)),

one-parameter exponential families (Robertson and Wegman (1978)),

Poisson intensities (Magel and Wright (1984)) and nonparametric

tests (Shirley (1977) and Robertson and Wright (1983b)). In

the normal case with b unknown, the LRT statistics are
k J n.

s01 _1 P2 jl ai.(Xij') and

k ni A2

S 12 _il wi(iyi) i=j1 a i 2 (X ij_1) and the tail
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probabilities under H0 are

pr(S 01.>t) _ Ik > t) (3)r(prCol~) "X-2 P((I~pCc-l}/2,(N-Z)/2 t) (3)

and
pr(S t) M k-I ~~~~p( 4

1rS2-t Z [-1 PC(~~r~k-t)/2,CN-k)/2 > t), ()

where N k and B is a random variable with beta

nil a a,b

distribution with parameters a and b.

The level probabilities can be obtained by the explicit

formulas discussed in Barlow et al. (1972, p. 146) if k < 4

and for k > 4 they can be obtained by their recursive relation

(3.23) and repeated numerical integration of their (3.38)

For the simple tree ordering and k > 2, their (3.38) and (3.23)

become

kkl + 1/2
P(kk;w) (( x)}(x)dx (5)

"- i=l w
and for 1 < Z < k,

P(,k;w) = jP(X,Z;W(B))P(l,k-X+l;w(B)), (6)

B

where (D and 0 are the c.d.f. and p.d.f. for a standard normal

distribution, the sum in (6) is over subsets of {1,2,...,k}

which include 1 and have cardinality k-k+l, W(B) is a vector

of length Z whose first coordinate is Ii.B wi and its remaining

coordinates are the w. with i 4 B, and w(B) is a vector of

length k-1+l made up of the wi with i E B and w1 is its first

coordinate. For the simple tree ordering, P(£,k;w) = P(£,k;w')

if w w1 and w ,...,wI is some permutation of w2,...,wk.

So the order of the last Z-1 coordinates of W(B) and the

order of the last k-. coordinates of w(B) is not important.
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Even for moderate k, computation via (5) and (6) can be quite

tedious. If w1 . ... a Wk, we suppress the w in the notation,

and note that their equations (3.38) and (3.39) give

P(k,k) = M: ((x))k'l (x)dx = 1/k; for 2 < Z < k-1

P(Z,k) = (k-i)P(lk+l)(s(x(k..l)1/2)Iklldx)dx; (7)

and P(1,k) 1 - =2 P(Z,k).

The P(t,k) for 2 < k < 12 are given in Table A.6 of Barlow et al.

(1972).

Since the X2 and beta distributions in (1) and (3) increase

stochastically with Z, upper and lower bounds for these tail

probabilities are found by obtaining upper and lower stochastic

bounds for the discrete distributions, Pk(w), which assign

probability P(t,k;w) to Z for Z = 1,2,...,k; cf. Theorem 1 of

Robertson and Wright (1982). In (2) and (4) the X and beta

distributions decrease with X and so upper bounds for these tail

probabilities are obtained by finding lower stochastic bounds for

Pk(w) and vice a versa.

Let IA() denote the indicator function of the set A,

for k > 2 and 1 Z . < k, define

A(k,k) = IZk.l,kl()/
2 and B(Z,k) = k-1)2

and let Ak and Bk be the corresponding discrete distribution

on (l,...,k}. The mixing coefficients, B(Q,k) were encountered

in Dykstra and Robertson (1982, 1983) and Robertson and Wright

(1982). The proof of the following theorem uses an algorithm

for computing the MLEs restricted by the simple tree ordering
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which is an immediate consequence of either Thompson's

minimum violator algorithm or the minimum lower sets algorithm

(MLSA), cf. Barlow et al. (1972, Section 2.3). Arrange the

treatment sample means in increasing order, X(2)- "' <

let Xi = XI' let X!= Xi) for i = 2,...,k, let wl = wI and

let w! be the weight associated with X for i = 2,...,k.
1 Wi

Choose j to be the smallest positive integer with

M. =? w! X1!)/Ij 1 W! <~ X!= 1 1 i 1 3+i

and if no such j exists, let j = k. The restricted MLEs are

Pi = M. if X. is included in M. and ii = X ' if not. The first

level set, Sk, consists of those is for which = -1i and,

assuming there are no ties among X(j+1),...,(k), there are

k - j + 1 level sets.

THEOREM 1. For k > 2 and any vector, w, of positive weights,

Ak and Bk are upper and lower stochastic bounds for Pk(w).

Furthermore, if w(n) = (i/n,l,...,l) and w?(n) = (n,l,...,l),

then P(t,k;w(n)) - A(Z,k) and P(Z,k; w'(n)) - B(Z,k) as n -'

*1 Proof. To establish that Ak is an upper bound we only need to

show that P(k,k;w) < 1/2. This follows immediately from

P(k,k;w) = pr(X 1 < Yi for i = 2,...,k). The proof that Bk is

a lower bound is by induction. Clearly, P(l,2;w) = P(2,2;w)

= 1/2. So we consider k > 2 and define Nk, Sk and 1lk to be

the number of level sets, the first level set and the value

of on the first level set in the restricted MLEs based on

Xl,...,Xk with weights wl,...,wk. Let Nk+l, Sk+l and l,k+l

be the corresponding values determined by the MLEs based on

Xl,...,yk~l with weights wl,...,wk+l. As in the earlier

discussion, let Jk card. (Sk).

A -. . . . . . i , * .. . "" - - i m , i l T I . . ' ' - Ie - -
[ "

I I 1 -
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Define Av(C) = J{i:i iCWi i/ {iC:iE}wi for 0 0 C c {1,...,k}.

We first show that Nk+1 > Nk + I ( l,k) (Xk+). Because the

estimates are restricted MLEs, we know that if Xk+l > 'l,k'

then k+l,k+l= and Nk+ 1 = N+. If Xk+l 5 l,k' then we

will show that Sk+ 1 c Sk u {k+ll. For it not, there is an

i C Sk+ 1 - (Sk u {k+l}) and so i # 1, Xk+l < Av(Sk) < Xi
which implies Av(Sku{k+l}) < X.. But by the MLSA,
Av(Sk+I) < Av(Sku{k+l}) and hence, Av(Sk+ 1  {i}) < Av(Sk+l)

which contradicts the choice of Sk+ 1 according to the MLSA.

So pr(Nk+l > £ + 1) > pr(Nk=Z,Xk+l > PIlk) + pr(Nk > £ + 1),

but the proof given for (3.23) in Barlow et al. (1972) shows

that pr(Nk = £,Xk+l > 11l,k ) =

[ pr(Av(Sk) < X C for all a E {l,...,k}-Sk,X(k+l>Av(Sk))P(Sk)

where the summation is overall Sk C {l,...,k} which contain {l}

and have cardinality k - Z + 1 and P(Sk  is the probability

that Av(S) > Av(Sk) for all S which are proper subsets of Sk

and contain {1}. But because Av(Sk ) < XI this sum is bounded

below by

.pr(Av(Sk) < Ya for all a c {1,...,k} - S

which according to their (3.23) is P(t,k;w)/2. Applying the

induction hypothesis, pr(Nk+l > t + 1) > (pr(Nk>)+pr(Nk>i+l))/2

kik~l k j+> 2-k k+l( k C =+l B(a,k~l)
an Oa£l' I =+

It remains to be shown that these bounds are sharp,

however these results are special cases of Theorem 2 and 4.

The proof is completed.
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To give some idea of the influence of w on the 2 tail

probabilities given in (1), the values of

-2 k 2 and 2  kXAt) = £=A(£t,k)pr x.lt an (t) = I =B(t,k)pr(X-_l>t)

with t = e0 .0 s(k), the equal weights 0.05 critical value, are

given in Table 1 for various k.



3. THE EQUAL WEIGHTS APPROXIMATION

Primarily, we study the accuracy of approximations as

they apply to (1), the tail probabilities of Bartholomew's

-2 test statistic. If one uses the 0.05 equal weights critical

value when in fact the weights are not equal the true significance

level, a, may be quite different from 0.05. For instance,

we see from Table 1, if k=5 then a may be as small as 0.0141

or as large as 0.0794. However, in practical situations the

discrepancy may be much less. Since the upper and lower

bounds occur as the limiting cases for w = (1,R,...,R) and

w = (R,1,...,l) respectively, it is of interest to consider

the corresponding discrepancies for moderate values of R. The

second and fourth columns of Table 2 contain the values of (1)

for these weights with k = 5 and t = e0. 0 5 (5) = 7.653. We

denote the value corresponding to (1,R,...,R) by x2(R)(t) and

that corresponding to (R,l,...,l) by 2(R)(t). The results

presented in Table 2 seem to indicate that if k=S and R,

the ratio of the largest weight to the smallest, is two or

smaller and one uses e0.0 5 (5), then 0.044 < a < 0.0S7 and

if R < 3, then 0.040 < a < 0.060. To further substantiate

these claims 5000 sets of random weights were generated.

In particular, five independent weights uniform on (1,Ru) were

generated and the value of (1) was computed at t = 7.653. In

5000 replications, all the values of (1) were between 0.044

and 0.056 for Ru = 2, and for Ru = 3 they were between 0.040

and 0.060.
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To give an indication of the behavior of the equal-weights

approximation for arbitrary weights, random weights were

generated. Five independent uniform (0,1) random numbers,

U,... ,U5 , were generated and with wi = Ui, Xw(7.653) and R

were computed. The second and third columns of Table 3 contain

a frequency distribution for the 5000 replications of this

experiment along with the minimum value of R for each cell.

For those 5000 -eight sets, we note that if R < 2.06 then

0.044 < a < 0.056 and if R < 3.34 then 0.04 < a < 0.06.

Next we consider the accuracy of the approximation as

k increases. While it is difficult to compute the level

probabilities for arbitrary w and larger k, the P(Z,k;w), with

weights of the form B(R) = (R,I,...,l) and A(R) = (I,R,...,R),

are much more tractable. For k = 8 and w = B(R), A(R) the

level probabilities were computed and (1) was evaluated at

t = e 0.05(8) = 11.807. These results are found in the sixth

and eighth columns of Table 2. While the limiting values are

considerably more extreme at k = 8, the increase in the errors

for the equal-weights approximation for k = 8 over k = 5 are

not so large when R = 2 or 3.

For many practical situations the equal-weights approximation

to the critical values of Bartholomews -2 test is adequate.

However, in some situations, in particular for moderate k and

considerable variation in the wis, other approximations need

to be considered. In the next section an approximation based

on the pattern of large and small weights is considered.
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4. AN APPROXIMATION BASED ON PATTERNS IN THE WEIGHTS

In the totally ordered case, Chase (1974) developed

an approximation for the situation in which w2 = ... =wk

and wl/w 2 > 1. His approximate critical values are obtained

by interpolating between the critical values for the equal-

weights X2 distribution and the X2 distribution corresponding

to the limiting P(t,k;w) as w1 -0 with w 2 = ... wk fixed.

Robertson and Wright (1983a) extended Chase's ideas to provide

an approximation for the totally ordered case. We use a

similar approach for the simple tree ordering.

First, we obtain the limiting values for P(Z,k;w) for each

situation in which the wi assume only two values, one of which

remains constant and the other approaches infinity. Since

P(t,k;w) = P(t,k;w') for w' = (cwl,...,cwk) with c > 0, the

exact value of the constant weights is immmaterial. The cases

in which the first weight is either small or large are different.

For the case in which the first weight is large we define

Q(t,k;s) to be limn P(k,k;w(n,s)) with the first k-s coordinates

of w(n,s) equal to n and the last s coordinates equal to 1 with

1 < s < k. For notational convenience we set P(l,l) = 1.

THEOREM 2. For k > 2 and 1 < s < k, {Q(£,k;s)} is the convolution

of {P(£,k-s)} with the binomial probabilities with parameters

s and 1/2.

Proof. The proof is by induction. For Z = 1 or 2,Q(L,2;l) =

lim nP(Z,2;(n,l)) = .5 and so the desired result holds for k = 2.
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Fix k > 2, 2 < £ < k and 1 < s < k-2. For the vector of

weights w(n,s) and the simple tree ordering, (6) gives

Q(t,k;s) = s0 s: k-l-s
limn (k- )P(,Z;w'(n,v))P(l,k-t+l;w"(nv)) (8)

where w'(n,v) has its first coordinate equal to n(k-Z-v+l)+v,

the next Z+v-l-s coordinates are n and the last s-v are 1

and w"(n,v) has its first k-£-v+l coordinates equal to n and

its last v are 1. The summand is zero if E+v-l-s or k-Z-v is

negative. Applying (5),

lim P(Z,2;w,(n,v)) = (I)s-v (,(Dx) v-l-So(x)dx

1

where X = (k-k-v+l) 2, but applying (5) again the right hand

side can be written as P(Z -s,k v-s;(k-Z-v+1,1,...,))/2
s -V

By the inductive hypothesis, if v>O, P(l,k-R+l;w"(n,v)) approaches

P(l,k--v+l)/2V and if v=O, the two expressions are equal.

So (8) becomes

s ) 2( k v)P('+v-st+v-s;(k-i-v+l,l,...,l))P(l,k- -. I)
V=0

and applying (3.39) of Barlow et al. (1972), this becomes
?5

S l

k

which is the desired result. Since Q(l,k;s) 1 -t=2Q(Z,k;s) the

result also holds for Z=l. The proof for s = k-l is like the

above except (8) becomes

k-l

The proof is completed.

For the case in which the first weight is small, we define

R(9k,k;s) to be the lim n-oP(2,,k;wA(n,s)) with 1 < s < k, the

first s. coordinates of w*(n,s) equal to I and the other k-s
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coordinates equal to n. We need not consider s = k, for if

all the coordinates of w*(n,s) are 1, then P(l,k;w*(n,s)) =

P(X,k). For the purpose of computing P(2,k;w) we may assume

Pi a 0 for i - 1,...,k. Consider w*(n,s), a fixed point in

the underlying probability space where the Ii are all

distinct and sufficiently large n. Choose a so that

X0 = mins+l<i<ki As n , becomes degenerate at zero

and so P Since < X for s < i < k with i # a,

Pi < Pi for such i. So the number of level sets is k-s-l

plus the number of distinct values in (11,...,PsO).

For k > 2 and 1 < R < k, define S(Z,k) - lim n P(Z,k;(l,...,l,n)

THEOREM 3. For k > 2 and 1 < Z < k, S(Z,k) is determined by

I k-i kS(k,k)=(l-()-) )/(k-1), S(l,k)il-I2 '.,S(Z,k) and for 2<Z<k-1

(9)1

k-2 E.-i k-2 r Z--S(i,k)ffi k.Z _ 1)S(1,k-t l)/2 +l ( k_- Z)P(1,k-t l) fo(,((k-Z l) x)) (p (x) di

Proof. The proof is by induction. Applying (5) and letting

n + , we see that

*~~0 -((X)24 d1 k-ikO I

and of course S(Z,k) = 1. So the desired result holds
Z=1

for k-2. Consider k>3 and 2<Z< k-i, applying (6),
S(9k,k)=Iim k-2_

By (5) lin 1 .- and

lim c nfoll.ws(fb((k-t ll/2x))yo2es (x)dx.

The conclusion follows from the inductive hypothesis.
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The values of S(2,,k) for k-2,...,10 and 1<Z<k are given

in Table 4.

THEOREM 4. Let k>2 and l<s<k. For k-s<t<k, R(k,k;s)

S(2.es~l-k,s~l) and for l<21<k-s, R(2k,k;s) = 0.

Proof. The proof is by induction. For k-2, s-i and R(k~,2;s)

=S(2Z,2) by definition. Consider k>3 and 1<s<k and note that

because R(Z,k;s) and S(2.,s+l) are probability vectors, we

only need to establish the first claim. Computing P(k,k;w*(n,s))

using (5) and letting n--, we see that'R(k,k;s) = ( 1 -(!)5 =s2)/
S(s+1,s~l). For max(2,k-s)<Z<k, we use (6) to compute

P(2,,k;w*(n,s)) and write R(Z,k;s) as

lin-.,c 1 0 (51 k-s (10

where the first Coordinate ofw**(n,v) is v+l+(k-i-v)n, the

next s-v-i coordinates are 1, the last Z.-s+v coordinates are

n, the first v~l coordinates of w***(n,v) are 1, and the last

k-Z-v coordinates are n. First consider k-s<tQ<k or O<k-Qtcs.

If v>k-k then k-X-v<0 and the corresponding term in (10) is

zero. If v-k-2., then P(l,k-t+l;%***(n,v)) = P(1,k-Zii) and

computing P(Q.,X;w**(n,v) using_(6) we see that the term with

v-k-9. in (10) approaches

whih 1:P(l ~k-Ltl)f((P((k-.t+l1 x)) s *-- (x)dx,

whc is the second term in the representation of S(L+s+l-k,s~l)

given in (9). If v-k-21-1, then P(l,k-Z2+l,w"*(n,v))-S(l,k-Xl)

and
1 L£s- k-4- -1sP(Z,9;w*1n,v))-( 2 ) f kJ(0(x))k tl(x)dx =(2 s~(k-s))-I
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Hence, the term with v= k-X-l in (10) approaches

(k- 1)(T S(l,k-t+l)

which is the first term in the representation of S(L+s+l-k,s+l)

given in (9). For v<k-L-l, P(l,k-t+l;w***(n,v))-R.l,k-£+l;v+l)

and k-t+l<s+l<k and so the inductive hypothesis holds.

R(l,k-t+l;v+l) = 0 since l<k-t+l-(v+l) = k-X-v.

Finally we consider X=k-s. If s=k-l, then w*(n,s)

and R(Z,k;k-l) = S(k,k) = S(l,s+l) which is the desired

conclusion. If s<k-l, then (10) is applicable for Z=k-s>2.

However, the term with v=s-i in (10) is (k-s)P(k-s,k-s;(s+n,n,...,

n))R(l,s+l) which approaches (k-s)P(k-s,k-s)R(l,s+l)=R(l,s+l). For

v<s-l, k-X-v=s-v>l and so P~l,k-k+l;w***{n,v))-R(l,k-t+l;s-v),

which by the inductive hypothesis is zero. The proof is completed.

We now describe a method of obtaining approximate p-values

or approximate critical values. Given a weight set w1 ,.. .w

classify each weight, wi, as small if w.<w or large if wi>w.

We considered choices for w of the form w = a min wi+(1-a)max w

and w = 8 min wi and based on numerical studies recommend

w = 1.5 min wi. Next find the p-value or critical value

determined by the limiting level probabilities if the small

weights were fixed at one and the large weights approached

infinity. Finally, interpolate between the limiting value

and the equal-weights value. For instance, the approximate

p-value is given by

P /F Pe + (I-vT)P (11)
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where r is average of the small weights divided by the average

of the large weights, Pe is the equal-weights p-value and

P is the appropriate limiting p-value. The choice of

for the exponent on r is based on numerical studies also.

Replacing the p-values in (11) by the appropriate critical

values, one obtains approximate critical values, which we

denote by aa (k).

Robertson and Wright (1983 a,b) studied the errors for

analogous approximate p-values as well as the errors in the

level of significance corresponding to approximate critical

values. In both cases, it was found that for p-values and

levels of significance of similar magnitudes, the errors

were similar in size. For that reason, we only study the

errors in significance levels arising from approximate critical

values. Columns 3,5,7 and 9 of Table 2 contains the true

significance levels corresponding to a0. 0 5 (k) for w = (R,l,...,l)

*and (I,R,...,R) with k = 5,8 and several values of R. For such

weights, the approximation given in this section clearly

*outperforms the equal-weights approximation. It is also clear

from Table 2, that the interpolation scheme given here puts

too much weight on the limiting critical values for small

values of R. However, this scheme was chosen because of its

performance on randomly generated weight sets.

*Because of the way it was developed, we would expect that

this approximation would perform well for weight sets with

only two distinct values and so we wish to compare it with
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the equal-weights approximation for arbitrary weight sets.

Recall, that Table 3 contains a frequency distribution of

-2Xw (e0. 0 5 ) for 5000 sets of weights which are pseudo independent,

uniform random variables on (0,1). For these same weight sets

the frequency distribution of X(a 0 0 5 ) is also given in

Table 3. It is clear that the approximation proposed in

this section is also more accurate than the equal-weights

approximation for these randomly generated weight sets.
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Table 1. XA (t) and XB(t) with t e 0 .0 5 (k)

k

3 4 5 6 7 8 9 10
-2(t 0.31001 0.11009 0.08003 0.03001

-2A(t) 0.0669 0.0746 0.0794 0.0827 0.0850 0.0863 0.0881 0.0891
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Table 2. (R2(t) and (2 (t) with t-eo 0 5 (k), ao.os(k) for k=5,Tal .XA(R) X(R)(t 0.0

k-S k-8

w-(I,R,...,R) w-(R,I,...,I) w-(I,R,...,R) w-(R,I,...,1)

R t-e0.05 (S) t-a0 .05(S) t-e0.05 (5) t-a0 .05 (5) t=e0 .05(8) t=a0.05 (8) t=e0 .05 (8) t=a0.05 (8)

1.5 0.0539 0.0494 0.0462 0.0506 0.0553 0.0498 0.0446 0.0528
2.0 0.0566 0.0492 0.0436 0.0506 0.0590 0.0499 0.0408 0.0536
3.0 0.0601 0.0492 0.0403 0.0501 0.0636 0.0501 0.0360 0.0534
5.0 0.0641 0.0494 0.0370 0.0491 0.0687 0.0503 0.0307 0.0520

10.0 0.0684 0.0497 0.0337 0.0481 0.0740 0.0505 0.0255 0.0495
100.0 0.0759 0.0500 0.0301 0.0482 0.0829 0.0504 0.0193 0.0472

0.0794 0.0500 0.0141 0.0500 0.0863 0.0500 0.0037 0.0500

If
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-2 -2

Table 3. Frequency distribution for x2( 7 .6 53 ) and x (a 0.05(5))

for 5000 randomly generated weight sets
-2-. -2

xw2 (7.653) Xw2 (ao0.0os(5))

Interval Frequency Minimum R Frequency Minimum R

(0.032, 0.036) 47 8.87 0 --

(0.036, 0.040) 397 4.85 3 15.41
(0.040, 0.044) 957 2.29 120 5.96
(0.044, 0.048) 1196 1.39 829 1.39
(0.048, 0.052) 868 1.14 2553 1.14
(0.052, 0.056) 543 1.39 345 2.77
(0.056, 0.060) 397 2.06 140 4.32
(0.060, 0.064) 242 3.34 54 6.88
(0.064, 0.068) 180 5.87 16 10.38
(0.068, 0.072) 110 12.11 2 112.14
(0.072, 0.076) 55 26.77 0 --
(0.076, 0.080) 8 123.94 0
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Table 4. Limiting level probabilities S(Z,k)=limn P(Zpk;(l,...,l,n)).

k

2 3 4 5 6 7 8 9 10

1 .5000 .1250 .0270 .0052 .0009 .0002 .0000 .0000 .0000
2 .5000 .5000 .2083 .0625 .0153 .0032 .0006 .0001 .0000
3 .3750 .4730 .2604 .0974 .0285 .0070 .001S .0003
4 .2917 .4375 .2910 .1280 .0431 .0120 .0029
5 .2344 .4017 .3073 .1535 .0579 .0178
6 .1937 .3687 .3145 .1740 .0721
7 .1641 .3395 .3161 .1902
8 .1418 .3139 .3141
9 .1245 .2917

10 .1109
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